

EXPLORING TWO DIFFERENT METHODS OF OBTAINING RANDOM

POINTS WITH UNIFORM DENSITY IN A CIRCLE AND COMPARING

THEIR COMPUTATIONAL EFFICIENCY.
(draft)

1

Contents Page. No

Background ... 2

MEASUREMENT OF COMPUTATIONAL EFFICIENCY .. 2

First Method: Rejection sampling .. 3

LIMITATION OF THE METHOD .. 5

The second method: Sampling on the polar coordinate system .. 6

POINT DISTRIBUTION IN DIFFERENT RADII ... 8

THE EXPECTED DISTRIBUTION .. 11

INVERSE TRANSFORM SAMPLING .. 14

Comparing the computational efficiency of the two methods ... 17

RELATION TO 𝝅 APPROXIMATION WITH MONTE CARLO SAMPLING... 18

References: .. 21

Appendix 1: Fewer instructions count ⇏ faster program .. 22

Output: .. 22

Appendix 2: Python implementation of rejection sampling method ... 23

Appendix 3: Python implementation of sampling on polar coordinates .. 24

Appendix 4: Visualizing the relationship between points density and distance from the

center given constant number of points per radius .. 25

Appendix 5: Comparing the executing speed ... 25

THE RESULTS OF EXECUTING TEST COMPARISON ... 26

2

Background

In my free time, programming is the primary way of expressing my creativity: programming

electronic systems, building simple software, and most importantly, programming allows me

to experiment and visualize different mathematical concepts.

 Several months ago, I was working on developing a simple multiplayer online game of

chance1. The game would prompt the players to put their fingers anywhere within the given

circle, and the game will then generate a random point within the circle. The player whose

chosen point has the shortest distance to the point selected by the game is the winner!

A crucial part of the game was to develop an algorithm that would generate uniform random

points, such as all positions inside the circle having the same probability of being selected.

While researching this, I came across different approaches I could use. However, I needed to

find out which method was the most efficient.

MEASUREMENT OF COMPUTATIONAL EFFICIENCY

In software development, the computational efficiency of a program can be measured by

using various factors such as CPU utilization, memory utilization, error rates, average load

time, execution speed, and instruction count, to mention a few. But for the scope of this essay,

I will only measure the efficiency in terms of execution speed and instructions count. It

should be acknowledged that this analysis might not be very accurate as the efficiency of a

program relies on numerous factors other than just execution speed. While fewer instruction

1 A game of chance is a game whose outcome depends on some random influence.

3

count generally implies a faster program, this is not always the case – this is further explained

in appendix 1.

In this essay, I will explore the mathematics behind two methods/algorithms of generating

random points with uniform density in a circle and computational efficiency in terms of

execution speed and instruction count.

First Method: Rejection sampling

To implement this method, we will first inscribe a circle inside a square, as shown in fig.1.

Given the circle's radius is r, the side of the square is equal to the circle's diameter- 2r.

From here, we could assume the Horizontal and vertical sides of the square as the x and y-

axis of a cartesian plane, respectively. We will then randomly select a point along the

horizontal axis and on the vertical axis. This method will have two cases where the chosen

point could either fall inside the circle–fig.2, or outside –fig.3.

Fig.1

4

To account for cases where obtained coordinates do not form a point within the circle, we

should restrict our selection such that the distance from the point to the center of the circle

is less than the radius.

From the equation of the circle;

 𝑥ଶ + 𝑦ଶ = 𝑟ଶ

This equation gives us all the points that are r units distant from a common point -the circle's

center. So, for a point (x, y) to fall within the circle of radius r, the distance between the point

and the center should be less than r.

⇒ 𝑥ଶ + 𝑦ଶ < 𝑟ଶ

So, in our rejection sampling, we will accept all the random points (xr, yr) such that 𝒙𝒓
𝟐 +

𝒚𝒓
ଶ < 𝒓𝒎𝒂𝒙

𝟐 – where rmax is the radius of the circle in this case. Otherwise, the point will be

rejected.

This mathematical information can be transcribed for python implementation, as shown and

explained in the code in appendix 2. After executing the program 7000 times, the result is as

shown in fig.4.

Xr

Yr

Fig 2: The selected point falls within the circle Fig 3: The selected point does not fall within the circle

5

LIMITATIONS OF THE METHOD

Rejection sampling is based on the fact that in a given event, failure is probable. The case is

the same in our method, which is the main limitation. For instance, if we want to obtain n

uniform random points, we will have to run the program at least (n + k) times, where k is

the number of times the point obtained falls outside the circle – failure. This implies that the

probability of the event where a point will fall inside the circle is given by;

𝑷(𝑿) =
𝒏

𝒏 + 𝒌

Fig 4: 7000 points uniformly distributed in a unit circle

6

This is similar to taking the circle’s area and divide by the area of the square from fig.1;

𝑇ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑤𝑖𝑡ℎ 𝑠𝑖𝑑𝑒 𝑠 = 𝒔𝟐 = (𝟐𝒓)𝟐

 = 𝟒𝒓𝟐

𝑇ℎ𝑒 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑙𝑐𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 r 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 = 𝝅𝒓𝟐2

⇒ 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛𝑔 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 =
𝝅𝒓𝟐

𝟒𝒓𝟐

 =
𝝅

𝟒

Since this event represents a binomial distribution;

⇒ 𝑡ℎ𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑏𝑒𝑖𝑛𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 = ቀ𝟏 −
𝝅

𝟒
ቁ

This implies that the probability of not obtaining a point inside the circle n times in a row is

given by;

ቀ𝟏 −
𝝅

𝟒
ቁ

𝒏

For instance, if the program was to be executed four times, the probability of not obtaining a

single point within the circle is about 0.00212. In other words, there is a 99.78% chance that

at least one point will fall within the circle.

Therefore, this limitation does not broadly undermine the computational significance of this

method because the probability of failure becomes very small as the number of trials

becomes very big. Another way to imagine this will be by limits;

⇒ 𝐥𝐢𝐦
𝒏→∞

ቀ𝟏 −
𝝅

𝟒
ቁ

𝒏

= 𝟎

The second method: Sampling on the polar coordinate system

7

In the previous rejection sampling method, we used the cartesian plane to specify the

position of a point relative to the circle by a pair of numerical coordinates. In a polar

coordinate system, any point can be defined by a distance from a reference point – the pole,

analogous to the origin in the cartesian system, and an angle from a reference direction. So,

the position of a point can be denoted as (𝒓, 𝜽)

Where;

 r = distance from the pole-the origin.

 𝜽 = 𝑇ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.

As we have seen previously, when doing the sampling with the cartesian system, we have to

take into account the possibility of selecting points outside the circle hence rejection

sampling. Using polar coordinates removes the necessity of doing rejection sampling

because, for a circle with a radius of 1, we can select a random number in the interval (0, 1)

= {𝑥 | 0 < 𝑥 < 1} and a random angle in the range [0, 𝟐𝝅] = {𝑥 | 0 ≤ 𝑥 ≤ 2𝜋}and, Of course,

given that the sample space is only defined within an interval, the probability of an outcome

outside the interval is zero.

Obtaining uniform random points within a circle by using this method takes the following

steps.

8

1. 𝐵𝑦 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑝𝑦𝑡ℎ𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝟎 𝑎𝑛𝑑 𝟐𝝅

2. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒 𝟎 𝑎𝑛𝑑 𝒓, 𝑤ℎ𝑒𝑟𝑒 𝒓 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑙𝑐𝑒

3. 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(𝒓𝒓, 𝜽𝒓) 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑓𝑜𝑟𝑚(𝒙, 𝒚);

𝒙 = 𝒓𝒓 ∗ 𝒄𝒐𝒔(𝜽𝒓) 𝒂𝒏𝒅 𝒚 = 𝒓𝒓 ∗ 𝒔𝒊𝒏(𝜽𝒓)

These mathematical instructions can be adapted as pseudo instructions for a python

implementation, as shown in the code in appendix 3. After running the program 7000 times,

we expect to get uniform random points within the circle, but the results are pretty different.

At first, it is surprising that the density does not appear uniform. The points are much more

densely packed towards the center and less densely packed as you move outwards.

POINT DISTRIBUTION IN DIFFERENT RADII

To understand the situation, I will create a histogram to show the frequency of the points in

a given radius. A histogram gives us a good approximate representation of the corresponding

Fig 5: Visualization of random points distribution obtained by the polar-coordinates method

9

probability distribution function (PDF). The only disparity is that a histogram involves

discrete data (individual classes or bins). On the other hand, a PDF involves continuous data,

hence a smooth curve in PDF as opposed to a histogram.

The probability of selecting any radius is uniform, and so is the probability of selecting any

angle. This implies that on average all the radii will have the same number of points.

To generate the histogram, I will calculate the distances to the center of every point

generated from fig.5, but because I am using polar coordinates the distance of a given point

(𝒓𝒓, 𝜽𝒓) is simply the magnitude of 𝒓𝒓. All these distances are then stored in a python list and

then a histogram is plotted, this is shown and explained in the code snippet in appendix 3.

The resulting histogram from the 7000 points in fig.5, is shown below.

The histogram in fig.6 approximates the probability distribution of points in fig.5. To get an

even better approximation of the PDF of the point distribution, we can generate a larger

sample of the points. For instance, if we generate 1 million points, the results are as follows.

Fig 6: Histogram showing frequency distribution of distances of the 7000 points from the center after sampling on polar coordinates

10

The distribution looks more rectangular as the number of samples increases, distributions

with this behavior are uniform distributions, so the PDF of this distribution is simply a

straight line enclosing a rectangular area.

The convergence of the distribution to a uniform one can also be explained by the law of

large numbers (LLN) where the average of the results of an experiment converges to the

expected value as the number of trials becomes very large, that is;

𝒍𝒊𝒎
𝒏→ஶ

෍
𝒙𝒊

𝒏

𝒏

𝒊ୀ𝟏

= 𝒙̄

Uniform distribution implies an equal probability of a randomly selected point within a

radius between 0 and 1. So on average, all radii will have the same number of points. Point

density in a radius can be interpreted as the number of points in that radius divided by the

circumference;

Fig 7: A histogram showing the distribution of 1 million points on different radii from 0 to 1 (figure produced by the candidate in
Python Matplotlib)

11

𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝒏

𝟐𝝅𝒓𝒓

From the equation above, we can deduce that, given a constant n number of points in every

radius, points density is inverse proportional to the radius rr. This justifies that the points

will be much more spaced or less densely packed for a bigger radii. An illustration below

visualizes this in a case where 70 points are equally spaced around the circumference of 30

different rings-radii (code explanation is in appendix 4), it shows; Toward the center, points

are more densely packed as supposed by the random points generated in fig.5.

It follows that the circumference grows linearly with the radius, so the number of points

should also grow linearly with the radius to keep the density of the points uniform. It is a bit

unintuitive, but in other words, to have uniform density, The point distribution must not be

uniform.

THE EXPECTED DISTRIBUTION

Fig 8: A Visualization of how points density is inverse proportional the distance from the center for constant number of points
(figure generated in Matplotlib by the candidate)

12

As we have already attained the desired results from the previous rejection sampling

method, we can generate a histogram to visualize the desired PDF. To do this, we can make

a python implementation –as explained within the code in appendix 2– which calculates the

distance from the center of all the points in fig.4 and store it in a python list, the list can then

be used to generate a histogram which shows the frequency distribution of points in all

distances between 0 and 1. The result is shown below.

From the frequency distribution shown by the histogram, it is evident that the number of

points per radius increases as the radius increases from 0 to 1, the outermost rings of points

should contain more points than their corresponding innermost. So, our desired PDF should

be a linear function. The PDF can therefore be expressed as an equation of a straight line;

𝒇𝑿(𝒓) = 𝒎𝒓 + 𝑪, 𝟎 < 𝑿 < 𝟏

Fig 9: An illustration showing how density varies on different radii given a constant number of points

13

Because our domain excludes radii of 0, the frequency of points whose distance is 0 units will

be zero. In other words, the probability of getting a radius of 0 is zero, this implies that the

line traced by the equation passes through the origin, so the y-intercept (C) is zero;

⇒ 𝒇𝑿(𝒓) = 𝒎𝒓 + 𝟎

 = 𝒇𝑿(𝒓) = 𝒎𝒓

Therefore, the graph of the desired PDF will look as follows;

But from our distribution function 𝒇𝑿(𝒓), the probability P(X), of picking a radius between 0

and the maximum radius 1 is 100%, that is;

𝑷(𝟎 < 𝑿 < 𝟏) = 𝟏

This probability is represented by the area under the graph, as shown in the above figure.

This is the cumulative probability which can also be found by integrating the probability

distribution function;

⇒ න 𝒇
𝑿

(𝒓)
𝒓𝒎𝒂𝒙

𝟎
𝒅𝒓 = 𝟏

Fig 10: The graph shape of the expected pdf

14

⇒ න 𝒎𝒓
𝒓𝒎𝒂𝒙

𝟎
𝒅𝒓 = 𝟏

The maximum possible radius rmax can be assumed to be simply the circle's radius – it is an

approximation because rmax itself is excluded. In our case, the radius is rmax is 1.

⇒ 𝒎 ቈ
𝒓𝟐

𝟐
቉

𝟎

𝟏

= 𝟏

⇒ 𝒎 = 𝟐

∴ 𝒇𝑿(𝒓) = 𝟐𝒓 , (0 < X < 1)

INVERSE TRANSFORM SAMPLING

Because we already know the required PDF, we can use the inverse transform sampling

method, which can help us randomly generate our sample radius according to our PDF given

the cumulative distribution function, but the CDF is simply the integral of the PDF

⇒ 𝑇ℎ𝑒 𝐶𝐷𝐹 𝑭𝑿(𝒓) = න 𝒇
𝑿

(𝒓) 𝒅𝒓

= න 𝟐𝒓 𝒅𝒓

∴ 𝑭𝑿(𝒓) = 𝒓𝟐

A cumulative distribution function 𝑭𝑿(𝒓) gives us the probability of the random variable X

being less or equal to its input r, that is;

15

𝑭𝑿(𝒓) = 𝑷(𝑿 ≤ 𝒓)

While the random variable X does not have a uniform distribution, its corresponding

probabilities do have a uniform distribution. To visualize this let us sketch the graph of

𝑭𝑿(𝒓);

As the graph of 𝑭𝑿(𝒓) shows, if we treat the probabilities (Y-values) as the input and take for

example 5 uniformly distributed points, the results shown on the x-axis reflect our desired

results where points with a greater value of r are more packed compared to the points on

the lesser value of r, this is as opposed to the distribution frequency from figure xx. This

implies that to get our desired distribution, we should take the inverse of our CDF-inverse

transforming;

𝑭𝑿(𝒓) = 𝒓𝟐

⇒𝒓 = ቂ𝑭−𝟏
𝑿(𝒓)ቃ

𝟐

∴𝑭ି𝟏
𝑿(𝒓) = √𝒓

Fx(r)

Fx(r)=r

r
Fig 11: Showing ununiform distribution with uniform probabilities

16

This implies that after obtaining a random number between 0 and 1, we will take the square

root of the number as the new random radius to obtain our desired distribution. The python

implementation is as shown in the following code snippet (further explained in the code in

appendix 2.)

 while(points_obtained<number_of_points): #conditions for the loop to terminate

 r = math.sqrt(select.random()*radius) # using the relationship obtained in inverse transforming to

obtained uniform density

With the new change in how we sample the radius, we get our desired results as shown

below.

To visualize the distribution, we can again use 1 million points, with their distances plotted

on a histogram, as follows;

Fig 12: Points distribution with uniform density obtained by sampling on polar coordinates

17

The results obtained by sampling 1 million times look almost the same as the PDF obtained

previously - f(x) = 2x in fig.10. This histogram gives us an excellent approximation, so our

results are correct.

Comparing the computational efficiency of the two methods

As previously mentioned, I will perform an execution speed test of the two methods and use

it to assess the computational efficiency. However, as already mentioned, this method can

not accurately assess computational efficiency.

8 million uniformly distributed points in a circle with a radius of 1 were generated by both

methods. The python code implementation for this is explained in appendix 5. After running

this experiment, the result is as shown below;

Method Number of points Execution time (s)

Rejection sampling 8000000 16.05

Polar coordinates method 8000000 15.61

Rejection sampling 1000 0.00021

Polar coordinates method 1000 0.00026

Fig 13: Histogram drawn with 1 thousand bins to show Frequency distribution of distances of 1 million points.

18

The polar second method seems to be performing averagely faster compared to the rejection

sampling method, but with a few numbers of points, for instance 1000, the rejection

sampling method performs faster than the polar coordinate method. The reason for rejection

sampling to become slower as the number of samples increases could be; as the number of

points to be generated increases, the number of times a point is outside (the points to be

rejected) the circle increases, so the program becomes slower. This is also proof by

counterexample to the previously stated mentioned statement (analyzed in appendix 1), that

fewer instructions do not necessarily imply a faster program. As we have seen, the rejection

sampling method sometimes runs faster despite having to repeat the instructions several

times.

It is safe to say that the polar coordinate method is generally faster. However, the application

of one method over the other depends on how many points we intend to generate. The

rejection sampling method has proved to be faster when generating a fewer number of

uniform points in a circle but loses its advantage as the required number of points increases.

RELATION TO 𝝅 APPROXIMATION WITH MONTE CARLO SAMPLING

While working on writing programs for this exploration, I remembered a method we studied

in class, which estimates the value of 𝜋 by the Monte Carlo method. It follows that given a

circle inscribed in a square as shown in fig.1 if particles were randomly scattered on the

surface of that figure, the probability that a particle falls inside a circle is
𝝅

𝟒
, proof for this has

been explained in the previous section.

19

In the case of our program, where we use rejection sampling, we have seen that if we want

to generate exactly n points inside the circle, we will have to run the experiment at least n +

k times, where k is the number of times the program fails;

⇒ probability of success
𝝅

𝟒
=

𝒏

𝒏 + 𝒌
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠

So, we can simply record the number of trials taken to generate n points, and the quotient

multiplied by 4 will give us an approximation of 𝝅. The following code snippet shows the

implementation in python, where 7000 points are generated.

quotient = points_obtained/trials
print(f'Pi = {pi}')
Output

⇒
𝝅

𝟒
= 𝟎. 𝟕𝟖𝟓𝟐𝟕𝟏𝟒𝟒𝟖𝟕𝟎𝟖𝟎𝟑𝟐𝟏

∴ 𝝅 = 𝟑. 𝟏𝟒𝟏𝟎𝟖𝟓𝟕𝟗𝟒𝟖𝟑𝟐𝟏𝟐𝟖𝟓 ≈ 𝟑. 𝟏𝟒𝟏

This gives us a good approximation of 𝝅 to the accuracy of 3 decimal places!

Conclusions

In this analysis, I was able to explore the mathematical aspects of 2 different methods of

generating random points with uniform density in a circle. I was able to empirically deduce

which method is relatively superior in terms of executing speed, and depending on the

required number of points to be generated, for instance for the game I am developing

rejection sampling method will be suitable as there will be only a few players at a given time

– realistically less than 100. This exploration allowed me to appreciate the interdependence

20

of programming and mathematics. When I expected the least, I found out my program could

be used to estimate the value of pi to an accuracy of 3 decimal places.

Limited by the computing power of my laptop, I could not properly take advantage of the law

of large numbers, mainly because I could not generate more than 10 million samples. In the

future when I have access to more powerful devices, I will be able to obtain results of higher

accuracy. But for this scope of exploration, this limitation does not undermine the

mathematical significance of my results.

In general, this exploration was a great opportunity to apply my programming and data

science knowledge from a mathematical perspective. The end of this exploration marks the

beginning of the newly discovered math exploration possibilities.

21

References:

aioobe. (2018a, June 7). Answer to “Generate a random point within a circle

(uniformly).” Stack Overflow. https://stackoverflow.com/a/50746409

aioobe. (2018b, June 8). Generate a random point within a circle (uniformly)

[Forum post]. Stack Overflow. https://stackoverflow.com/q/5837572

alvas. (2017, May 23). How to measure time taken between lines of code in

python? [Forum post]. Stack Overflow.

https://stackoverflow.com/q/14452145

Marengo, J. E., Farnsworth, D. L., & Stefanic, L. (2017). A Geometric Derivation

of the Irwin-Hall Distribution. International Journal of Mathematics and

Mathematical Sciences, 2017, e3571419.

https://doi.org/10.1155/2017/3571419

nubDotDev. (2021, August 21). The BEST Way to Find a Random Point in a

Circle | #SoME1 #3b1b. https://www.youtube.com/watch?v=4y_nmpv-9lI

22

Appendix 1: Fewer instructions count ⇏ faster program

With modern pipelined2 processors, the number of instruction counts cannot be used to

estimate performance or speed of a program, to put this into context let us compare the time

taken by a computer program to find the cosine of 𝜋 and compare to the time taken to find

the square of 𝜋 n times. On average, time taken to find the cosine of 𝜋 n times is almost twice

the time taken to find the square of 𝜋 2n times, this is a simple example of why fewer number

of instructions does not necessarily imply a faster program. Program implementation is as

shown below.

import time #Importing time library enable time measurement to 10-6 of a second
import math #Math library allows implementation of advanced mathematical operation

def squaring_pi(n): # defining a function which find the square of pi n times (n as
the input)
 for i in range(n): #looping the execution n times
 3.14**2

def cosine_pi(n): # defining a function F(n) to find the cosine of pi n times (n as
the input)
 for i in range(n): #looping the execution n times
 math.cos(3.14)

start = time.perf_counter() #recording the time the execution started
squaring_pi(10000000) #Calling the squaring function
end = time.perf_counter() #recording the time the execution ended
print(f"time to square pi 2 million times: {end-start}s") #Calculating and printing
squaring function execution time

start = time.perf_counter() #recording the time the execution started
cosine_pi(5000000) #Calling the cosine function
end = time.perf_counter() #recording the time the execution ended
print(f"time to find cosine pi 1 million times: {end-start}s")#Calculating and
printing cosine function execution time

Output:

2 Pipelining is a computational techniques where multiple instructions are paralleled during execution.

23

Appendix 2: Python implementation of rejection sampling method

import random #random library simulates randomness to high precision.

import math

import matplotlib.pyplot as plt #Matplotlib is a python plotting library for data

visualization

select = random.Random() #redefining random function with a variable 'select'

def rejection_sampling(number_of_points, radius): #define a function to uniformly generate n

random points in a circle given the radius

 distances = [] #creating an empty list ‘distances’ where will record the distance to

the center for every point

 x = [] # creating an empty list where we will store our x-coordinates

 y = [] # creating an empty list where we will store our y-coordinates

 points_obtained = 0 #At the start the points obtained is set zero

 trials = 0 #At the start the number of trials is set to zero

 while (points_obtained < number_of_points): # conditions for the loop to stop once the

desired number of points have been generated

 x_random = select.random() * 2*radius-radius # using random python library to

generate a random x-coordinate between -radius and radius (-1 and 1)

 y_random = select.random() * 2*radius-radius # Subtracting radius from the results

enable us to obtain points in all 4 quadrants

 trials += 1 # recording the number of trials

 if x_random ** 2 + y_random ** 2 < radius**2: # restricting to points within the

circle by using the equation of the circle

 points_obtained += 1 # recording the number of points obtained

 x.append(x_random), y.append(y_random) # storing the obtained coordinates of the

point into the corresponding x and y lists

 distances.append((x_random ** 2 + y_random ** 2)**0.5) #recording the distance of

the obtained point from the center

 #The following two lines are executed once the desired number of points have been

obtained, # x and y coordinated are transformed into rows and a scatter plot is then produced

for visualization

 plt.scatter(x, y,1) #plotting the points obtained on a scatter plot for visualization

 plt.show() # Showing the plot

 plt.hist(distances, 55) #plotting the histogram to show the expected frequency

distribution of distances of the points

 plt.show() #showing the histogram

rejection_sampling(7000, 1) # Calling the function to produce 7000 points within a circle with

a radius of 1 units, by rejection sampling

24

Appendix 3: Python implementation of sampling on polar coordinates

def sampling_on_polar(number_of_points, radius): #defining a function to generate
uniform points on polar coordinates

 x = [] # creating an empty list where we will store our x-coordinates
 y = [] # creating an empty list where we will store our y-coordinates
 distances = [] # creating an empty list ‘distances’ where will record the
distance to the center for every point
 points_obtained=0 #At the start the obtained points is set to zero

 while(points_obtained<number_of_points): #conditions for the loop to stop once
the desired number of points have been generated
 r = select.random() #selecting a random radius between 0 and 1
 # r = math.sqrt(select.random()*radius) # using the relationship obtained in
inverse transforming to obtained uniform density
 theta = (select.random()*2*math.pi) #selecting random angle theta between
zero and pi

 x_random = r*math.cos(theta) #Converting to x cartesian coordinate
from polar coordinates
 y_random = r*math.sin(theta) #Converting to x cartesian coordinate
from polar coordinates
 x.append(x_random), y.append(y_random) #storing the obtained coordinates into
their corresponding y and x lists
 points_obtained+=1

 distances.append(r) #recodring the distance from the point obtained to the
center

 plt.scatter(x, y,0.5) # Visualizing the point distribution in a scatter plot
 plt.show() # displaying the plot in a graphic window

 plt.xlabel("Distance from the center") #labelling the x-axis
 plt.ylabel("Density (number of points)") #labelling the y-axis
 plt.hist(distances) #plotting the histogram of distances
frequency distribution
 plt.show() #displaying the plot in a graphic window

sampling_on_polar(1000000, 1) #Executing the function to sample of polar
coordinates

25

Appendix 4: Visualizing the relationship between points density and
distance from the center given constant number of points per radius

import numpy as np
import matplotlib.pyplot as plt

def circle_points(r, n):
 points = []
 for r, n in zip(r, n):
 t = np.linspace(0, 2*np.pi, n, endpoint=True) #finding evenly
spaced points from 0 to n
 h = (2*np.pi*r)/n #space between each point in meters
 x = r * np.sin(t) #converting to circle coordinate on x-axis
 y = r * np.cos(t)
 for i in range(n):
 points.append([x[i],y[i]])
 return points
r = []
n = []
for i in range(0, 30):
 r.append(i*5)
for i in range(0, 30):
 n.append(70)

print(len(r))
print(len(n))

x,y=zip(*circle_points(r,n))
plt.scatter(x,y,30)
plt.axis('equal')
plt.show()

Appendix 5: Comparing the executing speed

Calculating the speed in seconds taken to generate 8 million uniform points in a circle by

rejection sampling method.

26

start = time.perf_counter() #recording the starting time
rejection_sampling(8000000, 1) # producing 7000 points within a circle with a
radius of 1 units, by rejection sampling
end = time.perf_counter() #recording the finishing time
print(f"Time take to reject-sample 8 million points:{end-start}s") #The execution
speed is the difference between the end and starting time

Calculating the speed in seconds taken to generate 8 million uniform points in a circle

sampling on polar coordinate method.

start = time.perf_counter() #recording the starting time
sampling_on_polar(8000000, 1) #Executing the function to sample of polar
coordinates
end = time.perf_counter()#recording the finishing time
print(f"Time take sample 8 million points with polar coordinate method:{end-
start}s")#The execution speed is the difference between the end and starting time

THE RESULTS OF EXECUTING TEST COMPARISON

